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Abstract

A study on the prospect of designing high power electronic packages with phase change cooling is presented, with
special emphasis on minimising the rising of junction temperatures due to thermal transient e�ects. The one-

dimensional thermal model consists of a ®nite slab suddenly exposed to a uniform heat ¯ux at the top surface and
cooled by convective air at the bottom. The phase change problem is divided into sub-problems and solved
progressively. Before the slab starts to melt, both exact and approximate solutions are presented for the distribution of

temperature in the slab as functions of time and Biot number Bi. The necessity of partitioning the time domain into two
regimes, separated by the time t0 needed for the thermal front to traverse across the whole slab, is emphasised. After the
slab melts, quasi-steady state solutions are obtained both for the melt depth and the evolution of surface temperature as

functions of time and Biot number when tm > t0, with tm denoting the time needed for melting to commence at the top
surface of the slab. The quasi-steady state solutions are compared with those obtained by using the method of ®nite
elements. Approximate but simple analytical solutions are also constructed for the tm < t0 case which, again, are
compared with the ®nite element results. Finally, these solutions are analysed to guide the design of advanced packages

with optimised phase change cooling strategies. 7 2000 Elsevier Science Ltd. All rights reserved.
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1. Introduction

One of the key barriers for developing next-gener-
ation high power electronic packages with power den-
sities in excess of 107 W/m2 has been the minimisation

of junction temperatures without liquid cooling [1±3].
The situation becomes even more conspicuous when
the device experiences a sudden surge of power density

due to, for instance, lightening. To meet the require-
ment on the safe operation area of the device, it has
been proposed to reduce the thermal resistance of the
device by phase change cooling, in addition to air con-

vection. It is the aim of this study to analyse the feasi-

bility of using such a cooling strategy on power
electronic packages whose maximum safe operating
temperature is around 4008C.
The generic problem to be analysed is schematically

shown in Fig. 1, where the top surface of a thin layer
of phase change material is suddenly exposed to a heat
¯ux of intensity Q. The top surface of the layer is

attached to the Si chip (the heat source, not shown in
the ®gure) whereas its bottom surface is cooled by con-
vective air. For a given heat ¯ux intensity Q, the ge-

ometry and thermophysical properties of the phase
change layer need to be optimised such that the tem-
perature achieved at the top surface of the layer is
kept below the maximum allowable temperature. In

reality, the phase change material is separated from
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direct air cooling by a substrate (e.g., AIN). The sub-
strate must be thin and conduct heat well, in addition

to other requirements such as thermal expansion
matching and low dielectric constant, and hence the
assumption of an e�ective coe�cient of heat transfer

equal to that of air convection at the substrate surface
holds (see Appendix).
The problem as shown in Fig. 1 belongs to a

class of heat transfer problems generally known as

the `Stefan problem' which ®nds prevalent appli-
cations in areas such as welding, laser material pro-
cessing, optical recording, laser shock hardening,

local di�usion and alloying, laser annealing of semi-
conductor thin ®lms, energy storage, and freezing/
thawing of soils and foodstu�s [4±9]. Despite of

obvious widespread interests, the Stefan problems
have no general solutions: even for a few special
cases such as a semiin®nite solid with the prescribed

temperature boundary conditions, assumptions must
be made regarding the temperature pro®les either in

the solid or liquid. For the solidi®cation of a semi-
in®nite liquid medium initially at melting tempera-
ture and subjected to a uniform heat ¯ux at the

surface, an approximate series solution is given in
Ref. [10]. The same problem is solved later by
Cohen [5] using the method of electrical analogy,
and by Xie and Kar [8] with a semi-empirical

approach. The solutions to the inverse Stefan pro-
blems, wherein the boundary conditions are speci®ed
at the moving rather than the ®xed boundary, are

discussed by Gibson [11] and Rubinsky and Shitzer
[12]. Assuming that the liquid is maintained at its
melting temperature, El-Adawi [7] develops an ap-

proximate analytical method for the problem as
speci®ed in Fig. 1. A numerical technique based on
®nite di�erence for solving multi-dimensional melting
problems is presented by Lazaridis [13], whereas the

method of heat balance integral is developed by
Goodman [14] to obtain approximate solutions for
the Stefan problems. The detection of laser-induced

melt at the surface of a solid in real time is
demonstrated using a photothermal de¯ection tech-
nique by Shannon et al. [15]. These authors also

derived a quasi-steady state solution for the melting
front in spherical coordinates due to a point source.
In the present paper, the complete mathematical

model for the problem of Fig. 1 is described in Section
2 and solved progressively in Sections 3±5. The exact
solution for the distribution of temperature in the
phase change material before melting is presented in

Section 3, followed by an approximate but much sim-
pler solution obtained using the variational formu-
lation. The evolution of temperature is conveniently

divided into two regimes I and II, separated by the
thermal penetration time t0 needed for the heat front

Nomenclature

Bi Biot number
cs, cl solid and melt speci®c heat
h local heat transfer coe�cient

H phase change layer thickness
I1, I2 material indices
ks, kl solid and melt thermal conductivities

L latent heat
Q heat ¯ux
t time

tc time for complete melting
t0 thermal penetration time
tm melting time
T0 initial and environmental temperature

Tm, Tv melting and boiling temperatures
Ts, Tl solid and melt temperatures
x coordinate

X melt front position

Greek symbols

DT � Tm ÿ T0

ks, kl solid and melt thermal di�usivities
r density

Subscripts
l liquid
s solid

Fig. 1. Geometry and boundary conditions for transient heat

transfer in a single layer.
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to penetrate from the top surface of the layer to the
bottom. The solution for regime I is identical to that

of a semi-in®nitely large medium exposed to a constant
heat ¯ux at the surface and thermally insulated at in-
®nity. Section 4 presents approximate analytical sol-

utions for the melt depth and the temperature of the
top surface, each as a function of time, with the
assumption that the applied heat ¯ux has an intensity

su�ciently low such that quasi-steady state tempera-
ture pro®les hold inside the melted as well as the
unmelted regimes. The range of validity of the quasi-

steady state solutions is discussed relative to those
obtained from the ®nite element method (FEM). In
Section 5, the solutions for the melting depth and tem-
perature distribution due to high heat ¯ux intensities

are obtained by using an approximate analytical tech-
nique as well as FEM. Finally, in Section 6, these sol-
utions are used to optimise the design strategy of

phase change cooling for advanced power packages
with prescribed performance speci®cations.

2. Speci®cations of the problem

The top surface of an isotropic and homogeneous
layer of initial temperature T0 is suddenly exposed to a

uniform heat ¯ux Q at time t � 0 (Fig. 1). It is
assumed that the layer has a thickness H small com-
pared with its other dimensions such that the loss of

heat from the sides is negligible, and that the surface
area of the layer is su�ciently large to allow the heat
being conducted perpendicularly to its top surface. As

part of the heat may be dissipated away due to radi-
ation and convection to the ambient, Q is treated here
as the net heat ¯ux absorbed by the layer and indepen-
dent of time t. Before melting, a portion of the input

heat is consumed on raising the temperature of the
layer, the rest being lost to the environment of tem-
perature T0 via the bottom surface of the layer at x �
H where a constant convective heat transfer coe�cient
h is assumed. (Here, for simplicity, the initial tempera-
ture of the phase change layer is assumed to be equal

to the temperature of the cooling medium; this
assumption can be relaxed if necessary.) Let Tm be the
melting temperature of the material of which the layer
is made and L the corresponding latent heat. Then,

after the top surface temperature reaches Tm, a portion
of the heat is also lost due to phase change (melting).
Let ks, ks, cs denote respectively the thermal conduc-

tivity, di�usivity and speci®c heat (at constant press-
ure) of the solid material, kl, kl, cl the corresponding
properties of the liquid material after melting, and

assume the liquid and solid have identical density r:
Let X�t� represent the line of melting front separating
the liquid and solid phases. Under these conditions, a

one-dimensional analysis of the problem is appropriate
and the temperature of the layer may be expressed as

Ts � Ts�x, t� for the solid and Tl � Tl�x, t� for the
liquid.
For linear ¯ow, the one-dimensional conduction of

heat in the liquid and solid must satisfy

@ 2Tl

@x 2
� 1

kl

@Tl

@ t
, 0RxRX�t� �1a�

@ 2Ts

@x 2
� 1

ks

@Ts

@ t
, X�t�RxRH �1b�

where constant thermophysical properties are assumed
due to a dearth of data on the temperature dependence
of these properties. The thermal conductivity of some
common phase change materials may increase by 10±

30% as the temperature is increased from 0 to 4008C
[16]. This variation, if included, is not expected to sig-
ni®cantly a�ect the phase change phenomena discussed

in this work. The initial and boundary conditions
appropriate for the problem are

Tl�x, 0� � Ts�x, 0� � T0, at t � 0 �2�

ÿkl
@Tl

@x
� Q, at x � 0 �3�

ks
@Ts

@x
ÿ kl

@Tl

@x
� rL

dX

dt
, at x � X�t� �4�

Tl�x, t� � Ts�x, t� � Tm, at x � X�t� �5�

ÿks

@Ts

@x
� h

�
Ts�H, t� ÿ T0

	
, at x � H �6�

X�t� � 0, tRtm �7�

where tm is the time needed for the top surface of the
layer to melt. The problem of melting as speci®ed by
Eqs. (1)±(7) is nonlinear due to the fact that the vel-

ocity of the melting front is coupled to the temperature
via Eq. (4). The solution presented below applies to a
motionless solid/liquid medium where the change of
volume due to melting is neglected (i.e., rl � rs � r).
It should be pointed out that, for applications such

as high power electronic packages, the phase change
material is usually placed on top of a substrate cooled

by air convection, and hence the coe�cient h intro-
duced in Eq. (6) is taken as an e�ective heat transfer
coe�cient in the sense that it accounts for contri-

butions from two sources: one from convection at the
bottom of the substrate and the other from heat con-
duction across the substrate. However, as demon-
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strated in Appendix, if the substrate is thin and con-
ducts heat well (which is a valid assumption for mod-

ern power electronics packages), h would essentially be
the same as the convective heat transfer coe�cient at
the bottom surface of the substrate.

3. Solutions before melting

In this section, exact and approximate solutions for
the temperature distribution inside a heated layer

before melting are presented and compared. These
temperature pro®les constitute the basis for the sub-
sequent analysis of melting in Sections 4 and 5. In ad-

dition, the importance of partitioning the time domain
into two regimes is emphasised.

3.1. Temperature pro®les

In the absence of melting �X�t� � 0�, Eqs.(1)±(3),

together with the convective heat transfer boundary
condition (6), can be solved by the method of Laplace
transform [10], yielding

Ts�x, t� ÿ T0

Q
� Hÿ x

ks

� H

ks

(
1

Bi
ÿ 2

X1
n�1

eÿl
2
nkst=H

2

cos�lnx=H�
ln�ln � sin lncos ln �

) �8�

Here, the nondimensional heat transfer coe�cient, Bi,

is the Biot number de®ned as Bi � hH=ks and ln are
the positive roots of the transcendental equation

ln tan ln � Bi �9�
In the limit Bi41 (i.e., constant temperature bound-
ary condition at x � H), ln � �2n� 1�p=2 reducing Eq.
(8) to

Ts�x, t� ÿ T0

Q
� 2

������
kst
p
k

X1
n�1
� ÿ 1�n

�
ierfc

2nH� x

2
������
kst
p

ÿ ierfc
2�n� 1�Hÿ x

2
������
kst
p

�

�Hÿ x

ks

ÿ 8H

ksp2
X1
n�0
� ÿ 1�n

� eÿ�2n�1�
2p2kst=4H

2

�2n� 1�2
sin

p�2n� 1��Hÿ x�
2H

�10�

where the function `ierfc' is de®ned in terms of the
error function `erf' as

ierfc x � eÿx
2���
p
p ÿ x�1ÿ erf x� �11�

If, on the other hand, the bottom surface of the layer

is thermally insulated with Bi � 0 then ln � np: For
®nite values of Bi, the coe�cients ln are bounded by
the above two limiting cases as

np < ln <
�2n� 1�p

2
, n � 0, 1, 2, . . . �12�

but otherwise ln must be determined numerically.
Although the solution (8) to the temperature distri-

bution is exact, it involves the evaluation of the sum of
an in®nite series, which is non-trivial. An approximate
but much simpler solution to the problem can be

obtained using the variation formulation, coupled with
the Kantorovich method [17], resulting in

Ts�x, t� ÿ T0

Q
�

���������
5kst
p
2ks

�
1ÿ x���������

5kst
p

�2

,

when 0RtRt0

� �Hÿ x�2
2ksH

� H

ks

�
�
1

Bi
� H 2 ÿ x 2

2H 2

�(
1ÿ e

ÿ
ks�tÿ t0 ��1� Bi=3�

H 2�2=3� 2Bi=15� 1=Bi�

)
,

when trt0 �13�

where t0 � H 2=5ks is the penetration time of the
applied heat ¯ux to the bottom surface �x � H � of the
layer and is independent of the amount of heat being
conducted. (Notice that the exact solution (8) gives
t0 � pH 2=16ks, slightly smaller than that given by the

approximate method t0 � H 2=5ks). For semi-in®nitely
thick layers �H41�, the solution simpli®es to

Ts�x, t� ÿ T0

Q
� 2

������
kst
p
ks

ierfc
x

2
���������
5kst
p , exact

�
���������
5kst
p
2ks

�
1ÿ x���������

5kst
p

�2

, approximate �14�

Selected numerical calculations indicate that, before

melting takes place, Eq. (13) accurately describes the
evolution of temperature in the layer, particularly so if
the material is near either surface of the layer or if
t > t0, with an error typically less than 1%.

In the limit t41, both Eqs. (8) and (13) reduce to
the steady-state result

Tsteady state ÿ T0

Q
� H

ks

�
1

Bi
� Hÿ x

H

�
�15�
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It follows that the maximum temperature the top sur-
face of the layer may reach is T max

surface�T0��QH=ks��
�1� 1=Bi �: However, since melting occurs as soon as
Tsurface � Tm the actual surface temperature would be
lower than that dictated by T max

surface, which is also

bounded by the boiling temperature of the material Tv:

3.2. Temperature regimes I and II

As shown in Eq. (13), there exist two regimes for the
temperature distribution in a layer of thickness H,

namely, t < t0 (regime I) and t > t0 (regime II). In
regime I, the bottom surface of the layer is yet to be
a�ected by the penetration of heat ¯ow such that

Ts�H, t� � T0: As a result, the temperature distribution
across the layer is identical to that for a semi-in®nite
medium satisfying limx41Ts�x, t� � T0, [5], with all of

the heat consumed on raising the temperature of the
material. In regime II, part of the heat is lost to the en-
vironment via the bottom surface x � H, causing the

temperature distribution inside the layer to depend on
both the layer thickness H and heat transfer coe�cient
h. Given that the characteristics of melting in regime I
are, in general, di�erent from those in Regime II, the

two regimes should be dealt with separately.
At t � t0, the temperature attained at the top surface

of the layer is readily calculated from Eq. (13), as

Tsurface�t0 �
Tm

� T0

Tm

� QH

2ksTm

�16�

which depends linearly on the layer thickness H. Also,
from Eq. (13), the time needed for the top surface of
the layer to melt, tm, is

tm
t0
�

8>>>><>>>>:
�
2ksDT
QH

�2

, if tmRt0

1ÿ 2

m
ln

�
1ÿ

�
2ksDT
QH

ÿ 1

�
Bi

2� Bi

�
, if tmrt0

�17�
where DT � Tm ÿ T0 and m is a dimensionless par-
ameter given by

m � 2kst0�1� Bi=3�
H 2�2=3� 2Bi=15� 1=Bi� �18�

With the assumption that T0 � 300 K, Fig. 2 presents
the reciprocal of tm=t0 as a function of layer thickness
H for two heat ¯ux intensities: Q � 108 and Q � 109

W/m2, and for four materials: aluminium, copper, tita-
nium and fused quartz. The thermophysical properties
of these materials as given by Xie and Kar [8] are

listed in Table 1. It is seen from Fig. 2(a) that for a
layer of thickness 0.5 mm and heat ¯ux Q � 108 W/
m2, among the four materials only fused quartz has

started melting when t � t0: On the other hand, if the
heat ¯ux is increased to Q � 109 W/m2, other con-
ditions unchanged, then all materials except copper

have started to melt after an elapse of time t0: Conse-
quently, the analysis of melting in a ®nite slab should
in general consist of two parts, one for melting time tm
less than t0 and the other for tm longer than t0:

4. Solutions for low power densities (tm> t0)

4.1. Quasi-steady state solutions

The problem of melting with a moving boundary
has no general solution [10,18]. Although approximate

analytical solutions are available for a few simpli®ed
cases with phase changes occurring at constant tem-
perature, numerical methods such as ®nite di�erence

Fig. 2. Dimensionless time to melting tm=t0 as a function of

layer thickness H for (a) Q � 108 W/m2, (b) Q � 109 W/m2,

with T0 � 300 K and h � 5 W/(m2 K).
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and ®nite elements are commonly used to deal with
more complicated problems.

If, however, the applied heat ¯ux has an intensity
typically less than 109 W/m2 and the layer of phase
change material is thin (<1 mm for power packaging

applications), the concept of `quasi-steady state' may
be used to arrive at approximate analytical solutions
both for the position of the melting line and the sur-

face temperature of the layer as functions of time.
The method of quasi-steady state assumes that the

variation of temperature with time is slow during melt-

ing such that the temperature gradients both in the
molten layer and solid layer are approximately con-
stant, although these may change with time. Under
this assumption, the temperature pro®le in the liquid

region at present time t may be taken as

Tl�x, t� � Tm ÿ Q

kl

�
xÿ X�t�	, xRX�t� �19�

which satis®es both Eqs. (3) and (5). Similarly, in the
solid region, the temperature distribution satisfying the

boundary conditions (5) and (6) takes the form

Ts�x, t� � Tm ÿ �Tm ÿ T0 �
�
xÿ X�t�	

H
�
1ÿ X�t�=H� 1=Bi

	 ,
X�t�RxRH

�20�

Substitution of the above temperature pro®les into the
enthalpy balance equation (4) leads to the following
parameteristic equation for X�t�

X�t�
H
ÿ ksDT

HQ
ln

(
1ÿ X�t�

H

�
1� 1

Bi
ÿ ksDT

HQ

�ÿ1)

� Q�tÿ tm �
rLH

�21�

where DT � Tm ÿ T0: The solution obtained from Eq.
(21) is approximate in the sense that the proposed tem-

perature pro®les (19) and (20) do not satisfy the energy
equation (1); they do, however, preserve the energy

balance at the melting front, i.e., Eq. (4).
For thin layers coupled with air convection,

Bi � hH=ks < 1, thus Eq.(21) is reduced to

X�t�
H
� Q�tÿ tm �

rLH�1� hDT=Q� �22�

Given that h010 W/(m2 K) for air cooling,
Q0106±1010 W/m2 for most applications, and
DT0100±1000 K, hDT� Q < 1, and hence the above

solution for the location of the melting front can be
further simpli®ed to

X�t� � Q�tÿ tm �
rL

�23�

which has a constant velocity Q=rL: From Eqs. (19)
and (23), the temperature at the top surface of the
phase change layer is obtained as

Tsurface�t� � Tm � Q2

rklL
�tÿ tm �, trtm �24�

where, for Bi� 1,

tm
t0
� 5

�
ksTm

QH

��
1ÿ T0

Tm

�
ÿ 1:5 �25�

Thus, when Bi� 1, the complete solution for the sur-
face temperature as a function of time can be summar-
ised from Eqs. (13) and (24) as follows

Tsurface�t� ÿ T0

Q

�

8>>>>>>>><>>>>>>>>:

���������
5kst
p
2ks

, 0RtRt0

H

2ks

� tÿ t0
rcsH

, t0RtRtm

Tm ÿ T0

Q
� Q

rklL
�tÿ tm �, trtm

�26�

After melting has occurred, the surface temperature as
given by Eq. (26) can also be conveniently written in
the following non-dimensional form

Tsurface�t� ÿ T0

Tm ÿ T0
� 1� Ste

5

�
ks

kl

��
QH

ks�Tm ÿ T0 �
�2

�
�
t

t0
ÿ tm

t0

�
, trtm �27�

where Ste � cs�Tm ÿ T0�=L is the Stefan number, with

t0 � H 2=5ks: The Stefan number is a dimensionless
measures of the degree of superheating that is being
experienced by the liquid. For materials having rela-

Table 1

Thermophysical properties of selected materials

Aluminium Copper Titanium Fused quartz

ks (W/(m K)) 226 397 22 1.67

ks (10
ÿ6 m2/s) 96.8 115 9.6 0.73

kl (W/(m K)) 92 170 28 2.87a

kl (10
ÿ6 m2/s) 38 43 8.23 1.5a

r (kg/m3) 2700 8960 4510 2650

Tm (K) 933 1358 1953 1743

Tv (K)b 2723 2833 3533 2270

L (105 J/kg) 3.97 2.05 4.37 1.46

a Data at 1500 K.
b Boiling temperature.
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tively high melting points, the value of Ste is of the
order of unity.

Fig. 3(a) presents the predicted variation of melt
depth with time, X�t�, in a layer of thickness H � 1
mm for two power densities: Q � 107 and Q � 5� 106

W/m2. The corresponding evolution of surface tem-
perature with time, Tsurface�t�, is plotted in Fig. 3(b).
The parameters used for the plotting are T0 � 300 K,

Tm � 673 K, L � 105 J/kg, ks � kl � 100 W/(m K),
r � 1000 kg/m3, cs � cl � 500 J/(kg K) and h � 10 W/
(m2 K). The same one-dimensional problem is also

solved by using the ®nite element code ABAQUS; the
results for X�t� and Tsurface�t� are shown in Fig. 3 as
the solid lines, which agree closely with those calcu-
lated from the quasi-steady state method (the dashed

lines). (A brief description of the ®nite element method
as used for melting problems will be given in the next

section.) Fig. 3 suggests that although the quasi-steady
state solutions somewhat overestimate the e�ect of
power density on both X�t� and Tsurface�t�, the beha-

vioural trends are correctly predicted: before melting,
X�t� and Tsurface�t� increase nearly linearly and quad-
ratically, respectively; after melting, both X�t� and

Tsurface�t� increase linearly.
We note that, for a semi-in®nitely large solid

exposed to low intensities of uniform heat ¯ux, Cohen

[5] obtained a similar expression for X�t� using the nu-
merical method of electrical analogy:

X�t� � 0:16Q�tÿ tm �
rL

�28�

where tm�pk2sDT 2=4ksQ is the time to start melting at
the surface of a half-space. Eq. (28) signi®cantly under-

estimates the position of the melting front when com-
pared with the ®nite element predictions.

4.2. Range of validity

The observed close agreement between the quasi-

steady state solutions and the more accurate FEM pre-
dictions is perhaps not unexpected, as the melting
front in each of the problems considered above moves

slowly across the layer, with a velocity _X�t� typically
less than 1 m/s (or, equivalently, Q < 108 W/m2).
From Eq. (23) it is seen that so long as the applied

heat is being completely absorbed by the melting line,
i.e., Q � rLX, the method of quasi-steady state should
hold (the method is no longer applicable when

X > Q=rL, as shown in the next section). During
quasi-steady state melting, the total time tc needed for
a layer of thickness H to completely melt upon heating
from the initial temperature T0 is

tc � tm � HrL
Q

�29�

where tm is the time needed to start melting given by

Eq. (25). Since the method of quasi-steady state im-
plicitly requires tm > t0, it follows from Eq. (25) that
the applied heat ¯ux must satisfy

Q <
2ks�Tm ÿ T0 �

H
�30�

which requires Q < 108 W/m2 for the parameters listed

previously for the plotting of Fig. 3. The inequality
(30) may be used to gauge whether the quasi-steady
state solutions are suitable for a given application. It

should also be noticed that these solutions, in general,
provide upper limits both for the melt depth and the
surface temperature.

Fig. 3. (a) Melt depth X�t�, (b) surface temperature Tsurface�t�
as functions of time for two heat ¯ux intensities: Q � 107 and

Q � 5� 106 W/m2. Quasi-steady state solutions are rep-

resented as dashed lines and FEM results as solid lines. The

other parameters used are H � 1 mm, ks � 100 W/(m K),

L � 105 J/kg, r � 103 kg/m3, cs � 500 J/(kg K), h � 10 W/

(m2 K), T0 � 300 K and Tm � 673 K.
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On the other hand, given that melting proceeds
quasi-steadily under uniform applied heat ¯ux Q, the

maximum amount of heat that a phase change layer of
thickness H and unit surface area may absorb is

�Q � Qtc � HrL

�
1� cs�Tm ÿ T0 �

L

�
ÿ 0:3

H 2Q

ks

�31�

Obviously, the phase change cooling would lose its

usefulness if the duration of the applied heat ¯ux is
longer than tc:
Finally, we note that additional FEM calculations

have con®rmed that the quasi-steady state solutions
are valid for cases where the solid thermal conductivity
is di�erent from the melt conductivity; here, the solid

and melt conductivities listed in Table 1 are used. The
trends are qualitatively similar to that shown in Fig. 3,
with the model predictions slightly larger than the
FEM results.

5. Solutions for high power densities (tm< t0)

When the intensity of the applied heat ¯ux exceeds
2ks�Tm ÿ T0�=H, the quasi-steady state solutions are
no longer applicable. In this section, two alternative

solutions are presented: one based on an approximate
analytical technique and the other with the ®nite el-
ement method. The method of ®nite elements can, in

general, account for the latent heat e�ects, if the mesh
is su�ciently re®ned to allow for temperature gradient
discontinuities across the (moving) melting line. The

commercial ®nite element code ABAQUS is used in
this paper. As described below, the simple closed-form
solutions from the approximate method agree remark-
ably well with the ®nite element predictions, particu-

larly so if t < t0:

5.1. Approximate solutions

When the intensity of the applied heat ¯ux is high, it
is to be expected that the material starts to melt even
before the thermal front reaches the bottom surface of

the layer. Mathematically, this may be expressed as

tm
t0
� 4

�
ks�Tm ÿ T0 �

QH

�
< 1 �32�

where t0 � H 2=5ks is the thermal penetration time and
the ®rst equation of (17) has been used. The above

inequality gives the range within which the approxi-
mate solutions to be developed below are valid.
Before the thermal front penetrates to the bottom

surface x � H, the thermal ®eld inside the layer with-
out phase change is the same as that given in Eq. (14)
for a half-space thermally insulated at in®nity. After

the top surface x � 0 starts to melt, we assume that
the temperature distribution in the molten layer has a

pro®le similar to that without phase changing. In ad-
dition, we assume that the thermal properties of the
material do not change after melting. Consequently,

the ¯uid temperature is taken as

Tl�x, t� � � T0 �
Q

������������������������
5ks�t� � tm �

p
2ks

�
1ÿ x������������������������

5ks�t� � tm �
p �2

�33�

where the new time scale t� starts from the moment
melting initiates at the top surface, i.e., t� � 0 when

t � tm: Here, the approximate temperature distribution
of Eq. (17) is used both for its simplicity as well as ac-
curacy when compared with the exact solution (which

is also given in Eq. (17)). Substitution of Eq. (33) into
the continuity condition (5) at the melting front leads
to

X�t� � �
������������������������
5ks�t� � tm �

p 241ÿ  2ksDT

Q
������������������������
5ks�t� � tm �

p !1=2
35
�34a�

where DT � Tm ÿ T0: It follows from Eq. (34a) that

the velocity of the melting front is

dX�t� �
dt�

�
���������������������

5ks

4�t� � tm �

s 241ÿ  ksDT

2Q
������������������������
5ks�t� � tm �

p !1=2
35
�34b�

Introducing the set of dimensionless parameters ~X �
X=a and ~t� � t�=�a2=5ks� with a � ksDT=Q one can
rewrite Eq. (34) as

~X� ~t� � �
���
2
p �~t� � 4�1=4

nÿ
~t�=4� 1

�1=4ÿ1o �35a�

d ~X�~t� �
d~t�

� � ~t
� � 4�ÿ1=2

2

(
1ÿ � ~t

� � 4�ÿ1=4���
2
p

)
�35b�

The corresponding evolution of surface temperature

with time, expressed in dimensionless form, is

~Tsurface� ~t� � � Tsurface� ~t� � ÿ T0

Tm ÿ T0
�
ÿ
~t�=4� 1

�1=2 �36�

Observe that the approximate solutions (33), (34) and

(36) satisfy the boundary conditions (3) and (5) as well
as the initial conditions at the start of melting, namely,
X�t� � 0� � 0 and Tsurface�t� � 0� � Tm, but not the

energy balance at the melting front as speci®ed by Eq.
(4). The predicted dimensionless melt depth ~X, its vel-
ocity d ~X=d~t�, and the temperature rise at the top sur-
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face �Tsurface ÿ T0�=�Tm ÿ T0�, are plotted in Fig. 4 as

functions of dimensionless time ~t�:

5.2. Finite element solutions

Although simple thermal elements, such as the linear
and quadratic elements used in ABAQUS, do not

allow discontinuities of temperature gradients (due to
latent heat e�ects) within an element, they do allow
such discontinuities between elements. A ®ne mesh

consisting of the lowest order elements, which provide
a high number of gradient discontinuity surfaces, is
used to simulate the physical problem where the dis-
continuity of temperature gradients (i.e., the melting

front) moves across the mesh. Typically, a total of
2000 elements are used for a layer of thickness H � 1
mm. In addition, for high heat ¯ux intensities coupled

with large latent heat, the temperature range within
which the melting takes place must be carefully speci-
®ed to avoid numerical instability.

For the same parameters as those used for plotting
Fig. 3, Fig. 5 presents the melt depth X�t� and the sur-
face temperature Tsurface�t� as functions of time for two
heat power densities Q � 109 and Q � 5� 108 W/m2.

The FEM results plotted as the solid lines agree well
with those from the analytical method shown in the
dashed lines, if t < t0: Again, this remarkable agree-

ment is somewhat expected, as it can be veri®ed that
both cases satisfy the inequality (32), with tm=t0 �
5:565� 10ÿ3 and tm=t0 � 2:226� 10ÿ2, respectively.

However, the approximate solution (34) for the melt
depth X�t� becomes less accurate after the thermal
front reaches the bottom surface (namely, when t > t0�

wherein the temperature distribution (33) for a half-

space thermally insulated at in®nity is no longer valid
for a ®nite layer. Thus, for the case t > t0, while the

FEM solution predicts an increasing velocity of the

melting front as it approaches the bottom surface, the
approximate solution (34b) suggests the contrary (Fig.

5(a)). Nevertheless, the evolution of the surface tem-

perature appears to be much less sensitive to the ap-
proximate temperature pro®le (33) even after t > t0, as

can be seen from Fig. 5(b).

In contrast to the quasi-steady state solutions for
low power densities, the above approximate solutions

for high-power densities are only valid for phase

change materials having identical solid and melt ther-
mal conductivities. Fortunately, for many materials

with solid conductivities smaller than 100 W/(m K),

their conductivities do not or only slightly change after

Fig. 5. (a) Melt depth X�t�, (b) surface temperature Tsurface�t�
as functions of time for two heat ¯ux intensities: Q � 109 and

Q � 5� 108 W/m2. Analytical solutions are represented as

dashed lines and FEM results as solid lines. The remaining

parameters used are identical to those in Fig. 3.

Fig. 4. Dimensionless melt depth ~X, its velocity d ~X=d~t�, and
temperature rise at the top surface �Tsurface ÿ T0�=�Tm ÿ T0�,
as functions of dimensionless time ~t� for high intensity levels

of applied heat ¯ux �tm < t0�:
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Fig. 6. The materials selection chart of (a) I1 � rksL, (b) I2 � rcsks versus Tm for phase change cooling.
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melting (e.g., titanium and fused quartz, Table 1). For
a widely used low temperature phase change material,

petroleum wax, its solid conductivity is approximately
the same as its melt conductivity �00:24 W/(m K))
[19]. For materials with large thermal conductivities

(>100 W/(m K)), it is not recommended to use the ap-
proximate solutions; more accurate method such as
®nite di�erence and ®nite elements should be used.

6. Design implications

During a heat pulse, Q�Dt�, it is required that the
device temperatures remain below an acceptable maxi-
mum, Tmax: Moreover, to take advantage of the phase

change, it is also necessary that Tmax > Tm and that
Dt > tm: For combination of pulse amplitude and
phase change properties such that tm < t0, Dt is related
to the surface temperature by Eq. (34a):

Dt � 4

5

rcsks�Tsurface ÿ Tm �2
Q2

�37�

where the condition that Tm should be just above T0

has been used. Then, the depth of the melting front is
obtained from Eq. (34a) as

X�Dt� � 2ks�Tsurface ÿ Tm �
Q

�38�

During the heat pulse, the energy absorbed by the
phase change material of initial temperature T0 is ap-
proximately

QDt � rLX�Dt� � rcsX�Dt��Tm ÿ T0 � �39�
Finally, upon substituting Eq. (38) into Eq. (39) and
equating Tsurface to Tmax, the allowable heat pulse has

the form:

Q2DtR2rksL�Tmax ÿ Tm � � 2
ÿ
k2s=ks

��Tmax ÿ Tm �

� �Tm ÿ T0 � �40�

A similar expression can be derived for the case tm >
t0 using quasi-steady state solutions. The result of Eq.
(40) suggests that, from a materials selection perspec-
tive, the material indices I1 � rksL and I2 � k2s=ks �
rcsks should be simultaneously maximised. However,
under the condition that Tm1T0, the ®rst term on the
right-hand side of the inequality (40) dominates over

the second term, hence the index I1 plays a more piv-
otal role in material selection than I2 does. Fig. 6(a)
and (b) present separately the cross-plots of I1 and I2
against Tm for all engineering materials, using the
Cambridge Materials Selector. For Si, Tmax11308C
and for SiC, Tmax14008C, suggesting that eutectic

alloys containing Sn, Pb, Zn (all having high density r
and low melting temperature Tm� with limited solid
solubilities to obtain high conductivity ks: Numerical
simulations performed for several notional materials

(see Table 2) illustrate the role of the phase change in
limiting the temperature. The best achievable property
combination based on the above calculations, subject

to physically realistic limits, is found to be:

r � 1:5� 104 kg=m3, cs � 5000 J=�kg K�,

ks � 150 W=�m K�

in addition to requiring that Tm1T0:
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Appendix. E�ective coe�cient of heat transfer

Consider the one-dimensional, steady-state transfer

of uniform heat ¯ux Q across a layer of phase change
material of thickness H1 which is bonded to a sub-
strate of thickness H2, as shown in Fig. A1. Let h0
denote the heat transfer coe�cient at the bottom sur-

face of the substrate x � H1 �H2 � H, and h the e�ec-
tive heat transfer coe�cient at the interface x � H1,
such that

ÿk1 @T1

@x
� h�T1 ÿ T0 �, at x � H1 �A1�

Table 2

Thermophysical properties of several `notional' eutectic ma-

terials

Snc Pbb Babbitt alloyc

ks (W/(m K)) 45 36 24

ks (10
ÿ6 m2/s) 24.2 25.3 15.9

r (kg/m3) 8850 10150 10040

Tm (K) 473 (216) 503 (247) 537 (217)

L (105 J/kg) 0.41 0.31 1.1

a Pb/50Sn solder (ASTM alloy Sn50).
b Pb/20Sn solder (ASTM alloy Sn20B).
c ASTM Standard B23-83: Alloy 15.

T.J. Lu / Int. J. Heat Mass Transfer 43 (2000) 2245±2256 2255



ÿk2 @T2

@x
� h0�T2 ÿ T0 �, at x � H �A2�

where the subscript `1' is used to denote the thermal
constants and temperature of the phase change ma-

terial, subscript `2' for the corresponding quantities of
the substrate, and T0 is the temperature of the convec-
tive medium. In the absence of melting, an elementary
analysis of steady-state heat transfer in the bi-layer sys-

tem results in

T1jx�H1
� T0 �Q

�
1

h0
� H2

k2

�
�A3�

T2jx�H � T0 � Q

h0
�A4�

Now, since ÿk1�@T1=@x� � ÿk2�@T2=@x� � Q under
steady-state, the combination of Eqs. (A1)±(A4) leads

to the following expression for the e�ective heat trans-
fer coe�cient h

h � h0
1� Bi

�A5�

where Bi � h0H2=k2 is the dimensionless Biot number.
For applications considered in this paper, Bi� 1,

hence h1h0 is an excellent approximation. For
example, Bi � 10ÿ5 if h0 � 5 W/(m2 K) for air convec-
tion, H2 � 0:5 mm and k2 � 250 W/(m K) which are

representative of the heat sink used in high power elec-
tronic packaging.
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